Structure optimization of neural networks for evolutionary design optimization
نویسندگان
چکیده
منابع مشابه
Structure optimization of neural networks for evolutionary design optimization
We study the use of neural networks (NN) as approximate models for fitness evaluation in evolutionary computation. To improve the quality of the NN models, structure optimization of these NNs is applied with respect to two different criteria: One is the commonly used approximation error, and the other is the ability of the NNs to learn different problems of a common class of problems. Simulatio...
متن کاملApplying evolutionary optimization on the airfoil design
In this paper, lift and drag coefficients were numerically investigated using NUMECA software in a set of 4-digit NACA airfoils. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks were then obtained for modeling both lift coefficient (CL) and drag coefficient (CD) with respect to the geometrical design parameters. After using such obtained polynomial n...
متن کاملEvolutionary Optimization of Neural Networks for Face Detection
For face recognition from video streams speed and accuracy are vital aspects. The first decision whether a preprocessed image region represents a human face or not is often made by a neural network, e.g., in the Viisage-FaceFINDER video surveillance system. We describe the optimization of such a network by a hybrid algorithm combining evolutionary computation and gradient-based learning. The ev...
متن کاملEvolutionary Optimization of Neural Networks for Reinforcement Learning Algorithms
In this paper we study the combination of two powerful approaches, evolutionary topology optimization (ENZO) and Tempoal Diierence Learning (TD()) which is up to our knowledge the rst time. Temporal Diierence Learning was proven to be a well suited technique for learning strategies for solving reinforcement problems based on neural network models , whereas evolutionary topology optimization is ...
متن کاملOPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Soft Computing
سال: 2003
ISSN: 1432-7643,1433-7479
DOI: 10.1007/s00500-003-0330-y